[eRD29] Precision Timing Silicon Detectors for a Combined PID and Tracking System at EIC

Frank Geurts, <u>Wei Li</u>, Shuai Yang, Yousen Zhang (Rice University)

<u>Friederike Bock</u>, Constantin Loizides (ORNL)

Christophe Royon (The University of Kansas)

BNL EIC Detector R&D Meeting March 26, 2020

Outline

- Recap of project goals
- Report of progress to date
- Assessment of readiness for a full TDR

Recap of project goals

Develop high-precision timing layers based on LGADs for simultaneous TOF and (outer) tracking measurements

A new project started last Oct., planned deliverables:

- 1) R&D of ultra-thin LGADs (10/2020–03/2021)
- 2) Simulations of a LGADs TOF-tracker (10/2020–05/2021)
- 3) R&D of TI- and AC-LGADs (03/2021–09/2021)

Recap of project goals

Develop high-precision timing layers based on LGADs for simultaneous TOF and (outer) tracking measurements

Adjusted plan:

- 1) Simulations of a LGADs TOF-tracker (10/2020–03/2021) ✓
- 2) R&D of ultra-thin standard and AC-LGADs (03/2021–09/2021) (slow in acquiring sensors and difficult for lab work due to COVID)

LGADs consortium – per recommendation of the committee

 collaborative efforts on application of ultrafast silicon for future HEP/NP detectors

EOI for EIC as a first cornerstone (LINK)

 14 Institutes: ANL, BNL, OMEGA, FNAL, IFJ PAN, IJLAB, LANL, MIT, ORNL, Rice, Stonybrook, UCSC, UIC, KU

Interests in different detector concepts

TOF, (4D) Tracker, Roman Pots, Preshower

Organize by areas of expertise/interest

- Physics Performance and Design
- Silicon sensors
- Front-end Electronics
- System Design, Mechanics and Engineering
- Meetings: https://indico.bnl.gov/category/323/

Expression of Interest (EOI): LINK Fast timing silicon detectors for EIC detectors

Artur Apresyan^d, Whitney Armstrong^a, Elke-Caroline Aschenauer^b, Mathieu Benoit^b, Carlos Munoz Camacho^f, Janusz J. Chwastowski^e, Olga Evdokimov^m, Salvatore Fazio^b, Frank Geurts^j, Gabriele Giacomini^b, Sylvester Joosten^a, Alexander Kiselev^b, Wei Li (contact)^j, Xuan Li^g, Constantin Loizidesⁱ, Jessica Metcalfe^a, Zein-Eddine Meziani^a, Rachid Nouicer^b, Christophe Royonⁿ, Hartmut Sadrozinski^l, Bruce Schumm^l, Abe Seiden^l, Laurent Serin^f, Rafał Staszewski^e, Stefania Stucci^b, Jacek Świerblewski^e, Christophe de la Taille^c, Daniel Tapia Takakiⁿ, Alessandro Tricoli (contact)^b, Maciej Trzebiński^e, Cinzia Da Via^k, Bolesław Wysłouch^h, and Zhenyu Ye^m

- Argonne National Lab (ANL)
- · Brookhaven National Lab (BNL)
- Organisation de Micro-Électronique Générale Avancée (OMEGA), Ecole Polytechnique
- · Fermi National Lab (FNAL)
- · Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN)
- Laboratoire de Physique des 2 Infinis Irène Joliot Curie (IJCLAB)
- Los Alamos National Lab (LANL)
- · Massachusetts Institute of Technology (MIT)
- · Oak Ridge National Lab (ORNL)
- · Rice University (Rice)
- Stonybrook University (Stonybrook)
- University of California, Santa Cruz (UCSC)
- · University of Illinois, Chicago (UIC)
- · University of Kansas (KU)

Contacts:

- Wei Li (wl33@rice.edu)
- Alessandro Tricoli

(Alessandro.Tricoli@cern.ch)

PID and tracking with LGADs for EIC

Detector simulations (Fun4all)

General design considerations:

- Placed as far away as possible
 - Behind dRICH
 - In front or after ECAL

LGADs timing layers implemented over the full phase space

PID and tracking with LGADs for EIC

Design details:

	Default	R _{barrel}	Length	z location	R _{endca}	o,in R	endcap,out	η coverage	Area (m²)
Backward	ETTLo			-1.555	0.07	7	0.632	[-3.7,-1.6]	1.23
	$ETTL_1$			-1.585	0.07	8	0.62	[-3.7,-1.6]	1.19
Central	$CTTL_{o}$	0.92	3.6					[-1.34,1.34]	20.8
	CTTL ₁	1.147	3.6					[-1.11,1.11]	25.9
Forward	FTTL ₀			2.87	0.116		1.527	[1.3,3.9]	7.28
	$FTTL_1$			2.89	0.11	7	1.538	[1.3,3.9]	7.39
	FTTL ₂			3.4	0.13	8	2.185	[1.1,3.9]	14.94
Default setup: ETTL ₀ + ETTL ₁ + CTTL ₀ + CTTL ₁ + FTTL ₀ + FTTL ₁ + FTTL ₂ aggressive									78.73
Alternative 1: ETTL ₀ + ETTL ₁ + CTTL ₁ + FTTL ₀ + FTTL ₂									
Alternative 2: ETTL ₀ + ETTL ₁ + CTTL ₀ + FTTL ₁					bas	baseline			37.89

Each ETT, CTT, FTT layer can all be independently built

PID with LGADs for EIC

With L uncer. only

With L and TOF uncer. (including T_0)

p range: 0.1-8 GeV

More details in the report

Together with dRICH, LGADs layers will cover PID over full p range for EIC, together with RICH

Tracking with LGADs for EIC

Tracking w/o vs. w/ LGADs layers

More details in the report

LGADs layers will serve as outer tracker to improve *p* resolution by up to 50% at 100 GeV/c and efficiency at forward y

PID and tracking with LGADs for EIC

Main lessons from comprehensive simulations:

- LGADs can provide TOF and tracking simultaneously!
- 1-2 layers placed as far as possible, behind RHIC detectors
- Time resolution of ~ 20 ps to cover from low (0.1 GeV/c) to intermediate (GeV/c) p range.
- Position resolution: \sim 30 μm to improve high p resolution by up to 50% at 100 GeV/c
- AC-LGADs with a pitch size of 0.5 mm and thickness of ~ 20-25 μm appears to the best option going forward

Expect to complete thin sensor R&Ds in the 2nd half of FY21 as COVID-19 situation improves (seems promising ...)

Beyond FY21 toward TDR

Assessment of technological readiness:

- LGADs is a mature technology that is being applied the upgrade of CMS and ATLAS timing layers for the high-luminosity LHC program, which faces much bigger challenges in radiation damage.
- For EIC, the technology needs to be optimized with targeted R&Ds, for specific requirements of PID and tracking momentum resolution (thinner active area, finer granularity, more power-efficient electronics, overall material budget etc.)

Beyond FY21 toward TDR

Elements to be built for a full TDR:

- ✓ Readiness of LGADs sensors (to achieve in eRD29)
- On detector electronics (ASICs)
- Modules (including power supplies, service electronics)
- Mechanical engineering, integration, installation
- Service (power system, cooling etc.)
- Data path, rates; Slow control, monitoring

Will address these together with the consortium

Two possibilities:

- ALTIROC (ATLAS): 130nm TDC, currently adopted by RP (eRD24)
- ETROC (CMS): 65nm TDC, more power-saving

Modules and mechanics

Copy CMS ETL designs to the 1st order

Mounted on Al plates with C0₂ cooling inside

Service: power and cooling

CMS ETL power budget (per endcap):

Component	Power (kW)			
Sensor	0.8			
ETROC	12.5			
lpGBT	0.6			
VTRx+	0.3			
DC-DC	7.5			
GBT-SCA	0.2			
Power cables	2.7			
Heating foils	1.0			
Total	26			

Dominated by ASICs and DC-DC

> ~2-2.5 mW per ASIC channel for occupancy ~ 10%

At EIC, much lower occupancy → lower power per channel but there are a lot more channels because of the finer pitch. More detailed estimation is needed.

Cost assessment and schedule

~ 2.5 FTEs toward a full TDR and prototyping in 2-3 years

e.g.,

Items	FY22	FY23	FY24
Electronics design/prototyping	1	1	1
Sensor optimization	1	1	0.5
Module, mechanics, service	0.5	0.5	1

<u>Summary</u>

Simulation studies provided key guidance on the detector design/specs to meet performance requirements

LGADs provide an excellent option for TOF and outer tracking layers that is compact, radiation-hard, B-tolerant

Readiness for EIC: LGADs technology is mature but requires optimization to meet EIC requirements

Toward a TDR: still a lot of work needed but expertise established by the consortium. More funding needed ...

Backups